

RecurDyn/TSG Tutorial

Yongwoo JUN

FunctionBay Solution Group

RecurDyn/TSG Tutorial (1)

Actuator

- Actuator : decides the number of the actuators
 - As shown in the below figure. Select Actuator icon to open Actuator List dialog. Create 4 actuators using Add button.

> Apply the actuators to the joints

- The actuators are used in Join Motion or Force using a function expression, 'TACT(...)'
 - ✓ Apply the below functions to TraJoint1~TraJoint4 as a joint motion (displacement type)
 - TACT(Actuator1), TACT(Actuator2), TACT(Actuator3), TACT(Actuator4)
- In this tutorial, the actuators will move 4 shakers below each tire up and down.

RECURDYN

RecurDyn/TSG Tutorial (2)

- Sensor : The response of the simulation which will be compared with the Target Signal.
 - As shown in the below figure, select **Sensor** icon to open Sensor List Dialog.
 - Add 2 sensors in Sensor List dialog.

Target

Define the function expressions for the sensors

FRF

- Any function expression can be used for sensors.
 - ✓ Acceleration(ACCX, ACCY, ACCZ), Velocity(VX, VY, VZ), Disp.(DX, DY, DZ)
 - ✓ Force(FX, FY, FZ, TX, TY, TZ), Stress(SX, SY, SZ), Strain(EX, EY, EZ), Etc.
- In this tutorial, Z-Acceleration and Y-Acceleration of CM of Chassis will be used.

RECURDYN

RecurDyn/TSG Tutorial (3)

Target : User-defined input data.

Target

- Time-dependent continuous data set measured from experiment or simulation. Performance index of RecurDyn/TSG.
- After importing measured data, Target data needs to be re-generated. (*.target)

Import csv file

- *.csv file (text file) is used
- The number of Target Data in csv file is dependent on the number of Sensors
- The sequence of the data in csv file must be, time1, data1, time2, data2, ...
- In this tutorial, there are 2 sensors, so that 4 data must be written in csv file as shown in the below figure.
 - \checkmark Even if the time data is duplicated, it should be written respectively.
 - \checkmark The Target Data must be written according to the sequence of the Sensors

RecurDyn/TSG Tutorial (4)

Target (2)

> Tips to generate Target Data

- The data measured from experiment usually includes High-frequency data as well as Low-frequency data.
- The high-frequency data can cause noise and error during simulation using TSG.
- So it is recommended to filter the data using Low Pass Filter so that the filtered data can include the signal below 50~100Hz when you generate *.csv file.
 - ✓ You can use Low Pass Filter in RecurDyn/Plot
 - ✓ The sample file of this tutorial, ACCZ_ACCY_50hz_2EA.csv includes the signal below 50Hz.
- Import csv file
 - Import csv file in 'Target Output Function' tab of Target Output List dialog
 - You can **plot** the Target Data for Sensor1, Sensor2 Target Data.

Protocology		
Target Signal (*CSV) ACCZ_ACC	10thc_28A.etv	
No Pat Windowing Ta	e Offset Name Target 0. Sensen ACC27(2) 0. Sensen	▲ Target Output Function - □
Security Programs 210	Phot 1008.	13.00
End Time Windowing Parameter for Target Sign Cit. Time (costs	(1 10	- "
Terpel Dutput Nie ("fakGET)	Target, 28A target	-5.00 -10.00 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2 Samping Time

RecurDyn/TSG Tutorial (5)

Target (3)

Sampling Frequency

- The number of data per 1 second. 1000 is used in this tutorial.
 - ✓ If Simulation End Time is 2sec, the number of data must be 2000.
- Since the number of data in csv file doesn't match the required number, you
 must re-generate the data file for the given sampling frequency and end time.
- You will create *.target data in the next page.

Window Parameter for Target Signals

- When the Time Signal is converted to frequency signal using Fourier Transform, the initial signal and the final signal is set to zero to minimize the error.
 - ✓ Windowing is applied about 10% of the entire time,
 - In this tutorial, 0.2 with Time Length type is used

Sampling Frequency (Hz)	1000. Pv
End Time	2. Pv
└── Windowing Parameter for Target Signals ────	
✓ Time Length ▼ Data Size	0.2 Pv
Time Length	
Target Output File (*TARGET)	Target_2EA.target
	Create Target Output File
	OK Cancel

RecurDyn/TSG Tutorial (6)

Target (4)

RECURDYN

Create Target Data

 Create *.target file from *.csv file based on Sampling Frequency, End Time, Window Parameter.

Create Target Outpuf File

- *.target file is a binary format for better performance.
- After specifying the file name and the path, click Create Target Output File button to create *.target.
- Click **Plot** button to plot the data in *.target.

Sampling Frequency (Hz)	1000. Pv		Target Output List Target Output Function Target Output List	
End Time	2. Pv	\mathbf{A}	Terget Output File (1, Takget) Terget, JEATerget	
Windowing Parameter for Target Signals	0.2 Py	7	No Pod Nama Torial 1 Sensel ACCELS 2 Sensel AfriceLS	
いび Target Output File (*TARGET)	Target_2EA.target			
	Create Target Output File			
	OK Cancel		Hot OK Castel	2.8

7 🗡

RecurDyn/TSG Tutorial (7)

FRF (1)

FRF (Frequency Response Function)

Computes the linearized model for System Identification (Transfer Function, H(f))

- Start/End Frequency(Hz)
 - ✓ To perform FRF, the frequency of the signal for actuator ('TACT(Actuator1)') is gradually increased using Sweep Sine Function. Start/End Frequency are for sweep sine function.
 - ✓ Since 0Hz is not valid, Set Start Frequency 0.001Hz.
 - ✓ Since the Target Signal is the data below 50Hz, set **End Frequency** 50Hz.

RECURDYN

RecurDyn/TSG Tutorial (8)

FRF (2)

- Set Magnitude of Sweep Sine Function in **Advanced Option**.
 - The model in this tutorial uses MKS unit, Magnitude = 1 means, the displacement of the tire is 1m. It is too excessive condition.
 - ✓ Set All the Magnitudes 0.01.

R ¹ No. 8			Advanced	Option		
Sampling Programs (Hz)	FBE.		No	Name	Magnitude	
Start Prequiring Pho	1442	[h]	1	Actuator1	1.e-02	Pv
ted frequency (%)	10	Ini	2	Actuator2	1.e-02	Pv
g. 1122 - 1995)			3	Actuator3	1.e-02	Pv
	ador	eres (teken	4	Actuator4	1.e-02	Pv

- Specify the file name and path for FRF result.
- Adjust Analysis Setting for Dynamic Analysis, then click Simulation button.
 - End Time and Step must be consistent with the Sampling Frequency.
 - ✓ Since the Sampling Frequency in this tutorial is 1000Hz,
 - ✓ Set End Time = 2sec, and Step = 2000.

PHF PIG (1989) [PHF,55.04		ynamic/Kinematic Analysis		×
Analysis Setting		General Parameter Initial Condition		
		End Time	2.	Pv
DYSTEMS INC.		Step	2000.	Pv
Aliguettric Up Decement	-1	Plot Multiplier Step Factor	1.	Pv
OK Currel		Output File Name		

RecurDyn/TSG Tutorial (9)

FRF (3)

- Procedure (3)
 - After you click **Simulation** button, the simulation is performed as the number of actuators.
 - ✓ In this tutorial 4 simulations are performed.
 - ✓ When Sweep Sine Function is applied to an Actuator during FRF, when one actuator is driven, the other actuators are set 0.
 - After simulation, You can Plot the Drive Signal (Sweep Sine Function) of the actuators and Response Signal of the sensors in FRF Result tab.

✓ 또한, FPLT 버튼을 실행하여 Plot Mode에서 FRF 결과를 직접 확인 가능함.

RecurDyn/TSG Tutorial (10)

Iteration

Iteration: performs the iterative simulation to find the Drive Signal applied to Actuator to match the Response Signal of sensor and Target Signal as much as possible using FRF result.

RecurDyn/TSG Tutorial (11)

FRF

Target

- Post-processor of TSG to review the result in *.tsg after iterative simulation.
 - **Error Rate (RMS)**: For each iteration, the RMS of the difference between Response Signal (Sensor) and Target Signal at every instant
 - **Error Rate (RMS (Error Rate))** : the relative difference the RMS of Target Signal for entire time and the RMS of Response Signal (Sensor) for entire time
- Procedure (1)
 - Specify the type of Error Rate and click Plot button to review the error rate of each iteration.

RecurDyn/TSG Tutorial (12)

- Procedure (2)
 - Select the desired Iteration Number
 - Plot the Drive Signal of the selected actuators and Response Signal of the selected Sensors.

RECURDYN

RecurDyn/TSG Tutorial (13)

- Procedure (3)
 - You can export all Drive Signal of the selected Iteration Number as *.tai file.
 - ✓ tai file can be used to perform additional iteration after 10 iteration already performed.
 - ✓ In Iteration dialog, check 'Use First Drive Signal' and specify *.tai file.

Result			Iteration		
Result			Iteration		
TSG File (*,TSG)	Result_SOHz_2EA.tsg		FRF File (*FRF)	2. GANN	FPLT
Error Rate	RMS (Error Rate)		Use First Drive Signal (*. TAI)		
Iteration Number	10	- Actuator1 Actuator3 Actuator3	TAU File		- Part
Drive Signal			- Cotoff Frequency		
No Plot	Actuator	0.000	Lower Bound (Hz)	1.e-03	Pv
2	Aduator2	A AMA A AMA	Upper Bound (Hz)	50,	Pv
4	Actuaturs Actuature	-0.020	- Windowing Parameter for Drive Sig	mait	
		-0.040 -0.040	Time Length	0.2	Pr
	Export Plat	6.00 0.20 0.40 0.40 0.40 1.00 1.20 1.40 1.40 1.40 2.00 Sampling Tree			
			- Iteration Parameters	14.5	
- Response Signal			Iteration Number	10	Py
No Plot	Sensor Expression SensorI ACC2(1,2)		Learning Factor	0.5	Pv
2	Semot2 ACCI(1,2)		TSG Result File (*.TSG) Result_5	OH2_2EA.tig	
			Analysis Setting	Simulate OK	Cancel
Elizadude Terraet Sig	aal Edinctude Firer Signal Biot			harden and	and I and the second second
Et ancience ranget sign	PUC PUC				
	OK Cancel				

RecurDyn/TSG Tutorial (14)

- > Procedure (4)
 - When you plot Sensor data in 'Response Signal'
 - ✓ You can plot Target Signal or Error Signal as well as the output of Sensor
 - ✓ You can use the option, 'Include Target Signal' and 'Include Error Signal'

esuit				
lesuit				
TSG File (*,TSG)	e.	Result_SOHz_2EA	tsg	
Error Rate		RMS (Error Rate)	* Pot	
teration Numb	ee.	10	-	
Drive Signal -		Thomas -		
No	Plot	3	Actuator	
1	~		Artustort	
2	5		Artuator2	★ Iteration#10 Perpanse Signal
4	~		Actuation	
Response Sig	nai —			15.00
No Pla	it .	Sensor	Expression	10.00
1 1		Sensor1	ACC2(1,2)	5.00
2		Sensot2	ACO(1.3)	
				-5.00
	formed from	ari Ellinci	ute Excer General	-10.00
Flaucings	miller siği	nte El Inici	ave crive argenter	0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2. Sampling Time
			OK Cancel	
			I	

Summary of RecurDyn/TSG Tutorial

Summary of RecurDyn/TSG Tutorial (1)

Summary of RecurDyn/TSG Tutorial (2)

Iteration

- Import FRF
- Specify options
 - Cutoff Frequency
 - Window Parameter
 - Iteration Parameter
- Create *.tsg File
 - 10 iterative simulations

Result

- Review Error Rate (RMS)
- Review Drive/Response Signal

ciuiton				
FRF File (*.FRF) FRF.Inf				
Use First Drive S	ignal(*. TAI)			
Tal Hie Attuator_400.		tal.	Pla	
Cutoff Frequency				
Lower Bound (H	4	1.e-03		
Upper Bound (Hz)		50.		
		-		
Windowing Para	meter for Drive Signais			
Time Leng	h 💌	0.2	Py	
	lers			
- Heration Parame	1 S	10	Pv	
Iteration Numbe				
Iteration Numbe		0.5	Py	
Iteration Parame		0.5	Pv	
- Iteration Parame Iteration Numb Learning Factor	SG) Result.tsg	0.5	Pr	

Thank you

5F, Pangyo Seven Venture Valley 1 danji 2dong, 15, Pangyo-ro 228beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13487, Korea Tel : +82-31-622-3700, Fax +82-31-622-3704, http://www.functionbay.co.kr

RECURDYN

RECURDY