

MBD for ANSYS Simulink Interface Training

James Kang

Korean English

FunctionBay, Inc. Extended Application Team Senior Manager (<u>mbd4a@functionbay.co.kr</u>)

Index

□ MBD for ANSYS Model

- 1. Create a new system
- 2. Importing Geometry
- 3. Unit and Gravity
- 4. Delete Contact Regions
- 5. Joint
- 6. Simulation
- 7. Plant Input & Plant Output
- 8. Analysis setting
- 9. Create Simulink Interface

Matlab Model

- 1. Current Directory
- 2. MBD for ANSYS Host Block
- 3. Simulink model

□ Simulation

- 1. Simulation
- 2. Post (Animation, Plot)

□ Improve Simulink Model

1. Adding PID control block

EDEM SimulationX EDEM Simulink CoLink Control Control DEM CoLink Control

MBS-FE Coup

FE/

Amesim

Simplorer

MBD for ANSYS Model

- 1. Create a new system
- 2. Importing Geometry
- 3. Unit and Gravity
- 4. Delete Contact Regions
- 5. Joint
- 6. Simulation
- 7. Plant Input & Plant Output
- 8. Analysis setting
- 9. Create Simulink Interface

Create a new system

- 1. Create a Multi-Body Dynamics system in the Project Schematic window
- 2. Right mouse button with the cursor over the Geometry field
- Select Import Geometry Browse
- 4. Select pendulum.x_t file and import it
- Right mouse button with the cursor over the Geometry field and select the Edit Geometry in DesignModeler

MBD for ANSYS

Multi-Body Dynamics

Importing Geometry

- 1. Click **Generate** tool in the toolbar of DesignModeler.
- 2. You can see the geometry.
- 3. Close DesignModeler
- 4. Save the project
- 5. Right mouse button with the cursor over the Model field and select the Edit...

MFRD

Unit and Gravity

- 1. Set the units to Metric (mm, kg, N, s, mV, mA)
- 2. Rename the geometries to **Pendulum** and **Base**
- Right mouse button with the cursor over the Multi-Body Dynamics in the outline window and select: Insert – Standard Earth Gravity
- 4. Change the **Direction** to –Y **Direction**

Delete Contact Region

- 1. Select Contacts in the Outline window.
- 2. Select **Delete** from the popup menu.
- You should uncheck the 'Auto Detect Contact on Attach' option for Mechanical if you don't want to repeat this 'Delete' operation later. (Tools – Options... in the Workbench Window)

Joint – Revolute Joint

- 1. In the MBD Entities Toolbar, select **Joint Revolute**
- 2. Set Connection Type to Body-Body
- 3. Select '**Base'** for the Base Body
- 4. Select '**Pendulum'** for the Action Body
- 5. Set Origin to **0,0,0**
- 6. Set Rotational Axis to 0,0,1

MFBD

Simulation

- 1. Solve the model
- 2. You can see the **animation**
- 3. You will add the PID controller for the pendulum in the next pages.

Ҳ 11

MBD for ANSYS Multi-Body Dynamics

1.

2.

3.

5.

Analysis Settings

 Set the parameters of Analysis Settings EndTime = 5 Step = 200 Maximum Time Step = 0.0001

Outline	₽ De	Details of "Analysis Settings"			
Filter: Name 🔻	=	Definition			
🖻 🔊 - be- 🖽 💼 🔺		Simulation Type	Dynamics		
Device t		General			
in Project		End Time	5 [sec]		
Geometry		Step	200 ^s		
🗄 🛶 🗊 Pendulum		Parameter			
🗄 🛶 📦 Base		Maximum Order	2		
Coordinate Systems		Maximum Time Step	0.0001		
Mesh		Initial Time Step	1E-06		
		Error Tolerance	0.005		
Analysis Settings		Integrator Type	IMGALPHA		
Joints 		Numerical Damping	1		
		Constant Stepsize	1E-05		
		Jacobian Evaluation	100		
TraForce1		Stop Condition	No		
Expressions	Ξ	Include			
ExZero		Static Analysis	No		
Ex_PlantInput		1			

FEA

MFBD

MBS-FE Coupling

R

- 1. In the MBD Co-Simulation Toolbar, select Simulink Interface
- 2. Set as below: Interface Version = 2.0Sampling Period = 0.001 (Set Interface Version = 3.0, if you use MATLAB 2016a or later)
- 3 Set Plant Block M-File filename to invertedPendulum and select 'Click to Export M-File'
- Click Show in folder and 4. confirm if invertedPendulum.m is generated (in MBD result folder)
- 5. Select Click to Change and set the Matlab.exe for Matlab Executable Location (\$Matlabroot₩bin₩win**₩MATLAB.exe)
- 6. Input Simulink Model filename to invertedPendulum MDL (in MBD result folder) \rightarrow This will be made in the next pages.

Matlab Model

- 1. Current Directory
- 2. MBD for ANSYS Host Block
- 3. Simulink model

MFBD

MBS-FE Couple

MBD

Multi-Body Dynamics

FEA

Particleworks

Amesim

Simulink

FMI

Contro

Simplorer

SimulationX

CoLink

EDEM

Working directory

- 1. Select **Open Solver Files Directory**
- 2. Select MBDResult folder
- 3. Copy the full path where invertedPendulum.m is located
- 4. Execute **Matlab** and **paste** the path to **Current Folder** of Matlab.

17 🔪

MFBD

MBD for ANSYS Host Block

- 1. Input **invertedPendulum** in Command Window + [Enter]
- 2. Input **makerd** in the Command Window + [Enter]
- 3. RecurDyn Host Block is created

MFRD

Simulink Model - Simulink Block

- Select Tools Library Browser in Simulink Window
- 2. Search gain in Simulink Library Browser
- 3. Drag and Drop a Gain Block to Simulink window where RecurDyn Host Block is.
- 4. Connect the blocks and set Gain to **-1800**

Simulink Model - save

- 1. Select File Save As...
- 2. Save as invertedPendulum.mdl as Simulink Models
- 3. invertedPendulum.m and invertedPendulum.mdl will be used for co-simulation

Simulation

- 1. Simulation
- 2. Post (Animation, Plot)

Simulation

- 1. Save the model before simulation
- 2. Select **Solve** to simulate the model
- 3. Matlab is automatically executed and co-simulation is performed.
- 4. After co-simulation is completed, green check icon is displayed. You can see the simulation log by clicking Solution Information.

utline 4	Details of "Solution Information" 4		Worksheet		
Filter: Name 🔻	Solution Information		Solver Output		
🖻 🖻 No 🗉 🦳 🗚	Solution Output	Solver Output	Joiver Output		
	Newton-Raphson Residuals	0			
Project	Identify Element Violations	0			
- Model (A4)	Update Interval	2.5 s	RecurDyn V9R1 [Windows x64 System 9.1.6951.0] Analysis	.1.6951.0] Analysis messag	
H Geometry	Display Points	All	Copyright (C) 1997 - 2017 FunctionB	ay, Inc. All rights reserv	
Ella Coordinate Systems			Madal file, MDDDault adam (Madal Nama, MDDDault)		
Magi Connections			Model IIIe. MbbResult.idyn [Model W	ame. MDDResult]	
- Multi-Body Dynamics (A5)					
Analysis Settings			Model Verification Time Information		
Standard Earth Gravity			Build Date : Nov 21 2017		
			Build Time : 19:08:20		
Forces					
Expressions			Suston Configuration Information		
🗄 🖳 🥎 PlantInputs			No. of Generalized Coordinate	= 2	
🗄 🧖 PlantOutputs			No. of Generalized Velocity	= 2	
			No. of Rigid Body	= 2	
🗄			No. of Plant Input	= 1	
Solution (A6)			No. of Plant Output	= 1	
Result for Body_1			Kinematic Degree of Freedom	= 2	
			Total array size	= 3972	
			Total memory size for array	= 0 MB	
			Success Process: Array Structure Co	nstruction	

Post

- 1. In the MBD Post Toolbar, select View – **RecurDyn Viewer**
- 2. Review the results in RecurDyn Viewer
 - 1) Animation
 - 2) Plot

Improve the Simulink Model

- 1. Adding PID control block
- 2. POST

MFBD

MBS-FE Couple

MBD

Multi-Body Dynamics

FEA

Particleworks

Amesim

Simulink

FMI

Contro

Simplorer

SimulationX

CoLink

EDEM

Adding PID controller

- 1. Execute Matlab
- 2. Set the current folder of Matlab to the full path of MBDResult
- 3. Input invertedPendulum in the command window + [Enter]
- 4. Input **makerd** in the **command window** + [Enter]
- 5. Double click invertedPendulum_MDL.mdl to open it.
- 6. Add Integrator block and Derivative Block and connect them and set Gains as below.
 P Gain = -1800
 I Gain = -250
 D Gain = -200
- 7. Save the Simulink model
- 8. Solve the model from MBD for ANSYS

Post

- 1. In the MBD Post Toolbar, select View – **RecurDyn Viewer**
- 2. Review the results in RecurDyn Viewer
 - 1) Animation
 - 2) Plot

MFBD

Explanation about the PID control model

MBD for ANSYS Host Block = MBD for ANSYS Model

MFRD

D

 \checkmark

MBD for ANSYS Simulink Interface Training

<u>강재묵</u>

Korean English

FunctionBay, Inc. Extended Application Team Senior Manager (<u>mbd4a@functionbay.co.kr</u>)

Index

I MBD for ANSYS 모델링

- 1. MBD for ANSYS analysis project schematic 생성
- 2. CAD 파일 Import
- 3. Unit 설정 및 Gravity 생성
- 4. Joint 엔티티 생성
- 5. Force 엔티티 생성
- 6. Plant Input / output 생성
- 7. Analysis setting
- 8. Simulink Interface 생성

□ Matlab 모델링

- 1. Current Directory 설정
- 2. RecurDyn Host Block 생성
- 3. Simulink 모델링

□ Simulation

- 1. Simulation
- 2. Post (Animation, Plot)

□ Simulink Model Upgrade

- 1. Adding PID control block
- 2. Post (Animation, Plot)

MBD for ANSYS 모델링

- 1. MBD for ANSYS analysis project schematic 생성
- 2. CAD 파일 Import
- 3. Unit 설정 및 Gravity 생성
- 4. Joint 엔티티 생성
- 5. Force 엔티티 생성
- 6. Plant Input / output 생성
- 7. Analysis setting
- 8. Simulink Interface 생성

Amesim

Simulink

FMI

Simplorer

SimulationX

CoLink

EDEM

MBS-FE Coup

MBD

ulti-Body Dynami

FE,

Particleworks

Creation MBD for ANSYS Analysis

- 1. Toolbox 에서 Multi-Body Dynamics analysis 를 생성
- 2. Project Schematic 에서 Geometry 셀을 마우스 우 클릭
- 3. Pop up menu 에서 **Import** Geometry – Browse 를 클릭
- **4. pendulum**.x_t 를 선택하여 Import
- 5. Geometry 셀에서 마우스 우 클릭 메뉴로 Edit Geometry in DesignModeler 를 클릭

MBD for ANSYS

Multi-Body Dynamics

Import CAD file

- 1. DesignModeler 앱이 실행되면 **Generate** 메뉴를 클릭 합니다.
- 2. 생성된 Geometry 를 확인 합니다.
- 3. DesignModeler 앱을 **종료** 합니다.
- 4. 프로젝트를 저장(**Save**)합니다.
- Project Schematic에서
 Model 셀의 마우스 우클릭 메뉴에서 Edit를 누릅니다.

Set unit, change geometry names, creation gravity

- 1. Units 메뉴에서 **Metric** (mm, kg, N, s, mV, mA) 로 변경
- 2. Outline 에서 Geometry 이름 변경. **Pendulum, Base**
- Outline의 Multi-Body Dynamics에서 마우스 우 클릭 후, 팝업 메뉴에서 Insert – Standard Earth Gravity 클릭
- 4. Direction 을 **-Y Direction** 으로 변경

Delete Contact Region

- 1. Outline 윈도우에서 Contacts 선택
- 2. 팝업메뉴에서 Delete 선택
- 이 작업을 이후에는 반복하지 않기 위해서는 Mechanical의 Auto Detect Contact on Attach 옵션의 체크를 해제. (Workbench 에서 Tools – Options...)

MFBD

Joint Creation – Translational Joint

- 1. MBD Entities Toolbar에서 Joint - **Translate** 클릭
- 2. Detail 창에서 Connection Type 을 **Ground-Body** 로 변경
- 3. Action Body 로 '**Base'** Geometry 선택
- 4. Origin 은 **0,-100,0** 으로 설정
- 5. Translational Axis로 **1,0,0** 으로 설정

MFBD

Simulation

- 1. Solve 를 통해 시뮬레이션
- **2. 애니메이션**을 확인 가능
- 3. 다음 페이지에서는 Pendulum을 위한 PID제어기를 추가할 것입니다.

Plant Input, Expression 생성

- 1. MBD Co-Simulation Toolbar에서 **Plant Input** 클릭
- 2. MBD Entities Toolbar에서 Expressions – **Function** 클릭
- 3. Expression 이름을 ExZero 로 변경하고, Function Expression을 2개 더 만든 후, Ex_PlantInput, Ex_PlantOutput으로 이름 변경
- 4. ExZero 입력창에 **0** 입력
- 5. Ex_PlantInput 입력창에 PIN(PlantInput1) 입력
- 6. Ex_PlantOutput 입력창에 (AZ(Pendulum.Revolute1_ a, Base.Revolute1_b)-5D) 입력

MBD for ANSYS

Multi-Body Dynamics

PlantOutput 생성

- 1. MBD Co-Simulation Toolbar에서 **Plant Output** 클릭
- 2. Detail 창 에서 Expression 으로 **Ex_PlantOutput** 선택

MFBD

Force Creation – Translational Force

- 1. MBD Entities Toolbar 에서 Force – **Tra.Force** 클릭
- 2. Detail 창 에서 Connection Type 으로 **Ground-Body** 선택
- 3. Action Body 로 '**Base'** Geometry 선택
- 4. Origin 을 **0,-100,0** 으로 설정
- 5. Force Expression 에서 FX Function Exp 로 Ex_PlantInput 선택, 나머지는 ExZero 선택

MFRD

Analysis Settings

1. Analysis Settings 의 Details 에서 다음과 같이 설정 EndTime = **5** Step = **200** Maximum Time Step = **0.001**

MFBD

MBS-FE Coupling

Simulink Interface

- 1. MBD Co-Simulation Toolbar에서 **Simulink Interface** 클릭
- 2. 아래와 같이 설정 Interface Version = **2.0** Sampling Period = **0.001** (MATLAB 2016a 이상의 버전을 쓴다면 Interface Version = 3.0)
- 3. Plant Block M-File filename 을 invertedPendulum으로 설정 후, "Click to Export M-File" 클릭
- 4. Show in folder를 눌러 **invertedPendulum.m** 파일이 생성 되었음을 확인. (MBD result 폴더에 있어야 함)
- 5. Click to Change를 눌러 Matlab Executable Location 으로 Matlab.exe 위치 설정 (\$Matlabroot₩bin₩win**₩MATLAB.exe)
- 6. Simulink Model filename 으로 invertedPendulum_MDL 설정 (MBD result 폴더에 있어야 함)

Matlab 모델링

- 1. Current Directory 설정
- 2. RecurDyn Host Block 생성
- 3. Simulink 모델링

MFBD

MBS-FE Couple

MBD

Multi-Body Dynamic

FEA

Particleworks

Amesim

Simulink

FMI

Contro

Simplorer

SimulationX

CoLink

EDEM

Set working directory

- Outline 에서 Solutions 의 마우스 우클릭 메뉴에서 Open Solver Files Directory 클릭
- 2. 실행된 탐색기에서 **MBDResult** 폴더 클릭
- **3. invertedPendulum.m** 파일이 존재하는 **폴더 경로** 를 복사
- 4. 3번에서 복사한 경로를 Matlab의 **Current Folder**에 붙여 넣고 엔터

Ҳ 44

MFBD

MBD for ANSYS Host Block 생성

- 1. Command Window 에 invertedPendulum 을 입력하고 엔터
- 2. Command Window 에 **makerd** 를 입력하고 엔터
- 3. Simulink Block window 가 실행되면서 RecurDyn Host Block 이 생성

MFRD

Simulink Block 생성

- 1. Simulink Window 에서 **Tools Library Browser** 클릭
- 2. Simulink Library Browser 에서 **gain** 입력 하여 검색
- 3. Gain Block 을 RecurDyn Host Block 에 있는 위치로 **Drag & Drop**
- 4. Gain 의 값을 -1800 으로 설정

Simulink 모델 저장

- 1. Save As... 를 클릭
- 2. 파일명 **invertedPendulum**.mdl Save as type : Simulink Models (***.mdl**) 으로 저장
- invertedPendulum.m 과 invertedPendulum.mdl 파일이 최종적으로 Co-Simulation 에 사용됨

Simulation

- 1. Simulation
- 2. Post (Animation, Plot)

Simulation

- 1. Simulation 하기 전에 모델 저장
- Outline 에서 Solution 마우스
 우 클릭 메뉴에서 Solve 클릭
- Matlab 이 자동으로 실행되면 서 Co-simulation
- 해석이 완료 되면 녹색 체크 아이콘으로 바뀌고, Solution Information 을 클릭 하면 해석 결과에 대한 로그를 볼 수 있음

	MBS-FE Coupling MRD
	FEA Multi-Body Dynamics
Co-simulation Requests Requests Standard Earth Gravity Solution Insert Results Solution Solution Insert Solution Solution Solution Co-simulation	EDEM DEM CFD SimulationX
Clear Generated Data allo Rename (F2)	Amesim FMI Control Particleworks
Group All Similar Children Copen Solver Files Directory Worksheet: Result Summary	simplorer CoLink Simulink

Dutline 4	Details of "Solution Informatio	n" 🗜	Worksheet	
Filter: Name 🔻	Solution Information		Solver Output	
🗟 🔊 - be 🖽 💼 🔺	Solution Output	Solver Output	conter output	
	Newton-Raphson Residuals	0		
j≣ Project ⊡ 🚱 Model (A4)	Identify Element Violations	0	RecurDyn V9R1 [Windows x64 System 9.1.6951.0] Analysis	
	Update Interval	2.5 s		.1.6951.0] Analysis messag
	Display Points	All	Copyright (C) 1997 - 2017 Functions	ay, Inc. All rights reserv
Connections		1	Model file: MBDResult rdwn (Model Name: MBDResult)	
Mesh			inder minebarorraja (inder a	
Multi-Body Dynamics (A5)				
Analysis Settings			Model Verification Time Information	
Standard Earth Gravity			Build Date : Nov 21 2017	
Joints			Build Time : 19:08:20	
E Forces				
Expressions			Sustem Configuration Information	
🗄 🗸 🥎 PlantInputs			No. of Generalized Coordinate	= 2
🗄 🖳 🕂 PlantOutputs			No. of Generalized Velocity	= 2
			No. of Rigid Body	= 2
🗄 🗤 🖉 Requests			No. of Plant Input	= 1
Solution (A6)			No. of Plant Output	= 1
Solution Information			Viromatic Dograp of Freedom	- 2
Vesuit for body_1			Kinematic Degree of Freedom	- 2
			Total array size	= 3972
			Total memory size for array	= 0 MB
			Success Process: Array Structure Co	nstruction
	I			

Post

- 1. MBD Post Toolbar 에서 View RecurDyn Viewer 클릭
- 2. RecurDyn Viewer 에서 POST 확인
 - 1) 애니메이션

2) Plot

Simulink Model Upgrade

- 1. Adding PID control block
- 2. POST

Adding PID controller

- 1. Matlab을 실행
- 2. MBDResult 폴더 경로를 Matlab의 Current Folder로 설정
- 3. Command Window 에 invertedPendulum 입력하고 엔터
- 4. Makerd 입력하고 엔터
- 5. invertedPendulum_M이.m이 을 더블 클릭하여 오픈
- 6. Library Browser에서 **Integrator block, Derivative Block** 추가한 후, 그림과 같이 Block 연결하고 Gain값을 설정 P Gain = -1800 I Gain = -250 D Gain = -200
- 7. Simulink 모델 Save
- 8. MBD for ANSYS에서 모델을 다시 시뮬레이션 (**Solve**)

Post

- 1. MBD Post Toolbar 에서 View RecurDyn Viewer 클릭
- 변경된 결과 확인

 애니메이션
 Plot

MBD for ANSYS Host Block = MBD for ANSYS Model

PlantInput으로서 입력됨)

